Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.512
1.
ACS Chem Neurosci ; 15(10): 2006-2017, 2024 May 15.
Article En | MEDLINE | ID: mdl-38683969

Potently affecting human and animal brain and behavior, hallucinogenic drugs have recently emerged as potentially promising agents in psychopharmacotherapy. Complementing laboratory rodents, the zebrafish (Danio rerio) is a powerful model organism for screening neuroactive drugs, including hallucinogens. Here, we tested four novel N-benzyl-2-phenylethylamine (NBPEA) derivatives with 2,4- and 3,4-dimethoxy substitutions in the phenethylamine moiety and the -F, -Cl, and -OCF3 substitutions in the ortho position of the phenyl ring of the N-benzyl moiety (34H-NBF, 34H-NBCl, 24H-NBOMe(F), and 34H-NBOMe(F)), assessing their behavioral and neurochemical effects following chronic 14 day treatment in adult zebrafish. While the novel tank test behavioral data indicate anxiolytic-like effects of 24H-NBOMe(F) and 34H-NBOMe(F), neurochemical analyses reveal reduced brain norepinephrine by all four drugs, and (except 34H-NBCl) - reduced dopamine and serotonin levels. We also found reduced turnover rates for all three brain monoamines but unaltered levels of their respective metabolites. Collectively, these findings further our understanding of complex central behavioral and neurochemical effects of chronically administered novel NBPEAs and highlight the potential of zebrafish as a model for preclinical screening of small psychoactive molecules.


Behavior, Animal , Phenethylamines , Zebrafish , Animals , Phenethylamines/pharmacology , Behavior, Animal/drug effects , Brain/metabolism , Brain/drug effects , Male , Hallucinogens/pharmacology , Psychotropic Drugs/pharmacology , Serotonin/metabolism , Dopamine/metabolism
2.
J Med Chem ; 67(8): 6144-6188, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38593423

Structure-activity studies of 4-substituted-2,5-dimethoxyphenethylamines led to the discovery of 2,5-dimethoxy-4-thiotrifluoromethylphenethylamines, including CYB210010, a potent and long-acting serotonin 5-HT2 receptor agonist. CYB210010 exhibited high agonist potency at 5-HT2A and 5-HT2C receptors, modest selectivity over 5-HT2B, 5-HT1A, 5-HT6, and adrenergic α2A receptors, and lacked activity at monoamine transporters and over 70 other proteins. CYB210010 (0.1-3 mg/kg) elicited a head-twitch response (HTR) and could be administered subchronically at threshold doses without behavioral tolerance. CYB210010 was orally bioavailable in three species, readily and preferentially crossed into the CNS, engaged frontal cortex 5-HT2A receptors, and increased the expression of genes involved in neuroplasticity in the frontal cortex. CYB210010 represents a new tool molecule for investigating the therapeutic potential of 5-HT2 receptor activation. In addition, several other compounds with high 5-HT2A receptor potency, yet with little or no HTR activity, were discovered, providing the groundwork for the development of nonpsychedelic 5-HT2A receptor ligands.


Phenethylamines , Serotonin 5-HT2 Receptor Agonists , Structure-Activity Relationship , Animals , Humans , Phenethylamines/pharmacology , Phenethylamines/chemistry , Phenethylamines/chemical synthesis , Administration, Oral , Serotonin 5-HT2 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Agonists/chemistry , Serotonin 5-HT2 Receptor Agonists/chemical synthesis , Male , Biological Availability , Rats , Mice , Rats, Sprague-Dawley , Drug Discovery , Receptors, Serotonin, 5-HT2/metabolism , Receptor, Serotonin, 5-HT2A/metabolism
3.
Phytochemistry ; 222: 114090, 2024 Jun.
Article En | MEDLINE | ID: mdl-38599509

In this study, ten phenylpropionyl phenylethylamines, including five previously undescribed ones (1a/b, 2a/b, and 3), five known analogues (4-8), and two established phenylpropanoids precursors (9, 10) were isolated from the aerial parts of Chloranthus henryi Hemsl. Their structures, including absolute configurations, were determined by high-resolution mass spectrometry, enantio-separation, electronic circular dichroism calculation, and single crystal diffraction. Compounds 1a and 1b were the first examples of natural hetero-[2 + 2] cycloaddition products between phenylpropionyl phenylethylamine and phenylpropene. The plausible hetero-[2 + 2] biosynthesis pathway was confirmed by a photocatalytic biomimetic synthesis in eight steps, which also led to the production of three other potential natural homo-[2 + 2] adducts (1'a/b, 2', and 3'). Bioactivity screening indicated that these adducts bear medium inhibitory activity on nitric oxide generation, with IC50 values of 6-35 µM in RAW 264.7 macrophages.


Nitric Oxide , Phenethylamines , Mice , Animals , RAW 264.7 Cells , Phenethylamines/chemistry , Phenethylamines/isolation & purification , Phenethylamines/pharmacology , Phenethylamines/chemical synthesis , Nitric Oxide/biosynthesis , Nitric Oxide/antagonists & inhibitors , Molecular Structure , Amaryllidaceae/chemistry , Biomimetics , Dose-Response Relationship, Drug , Structure-Activity Relationship
4.
Arch Pharm Res ; 47(4): 360-376, 2024 Apr.
Article En | MEDLINE | ID: mdl-38551761

Novel psychoactive substances (NPSs) are new psychotropic drugs designed to evade substance regulatory policies. 25E-NBOMe (2-(4-ethyl-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine) has recently been identified as an NPS, and its recreational misuse has been reported to be rapidly increasing. However, the psychopharmacological effects and mechanisms of 25E-NBOMe have not been studied. We examined the abuse potential of 25E-NBOMe using the conditioned place preference in male mice and self-administration paradigms in male rats. Additionally, immunoblot assay, enzyme-linked immunosorbent assay, and microdialysis were used to determine the molecular effects of 25E-NBOMe in the nucleus accumbens (NAc). Our data demonstrated that 25E-NBOMe induces conditioned place preference, and the dopaminergic signaling in the NAc mediates these. Following 25E-NBOMe administration, expression of dopamine transporter and dopamine D1 receptor (D1DR) were enhanced in the NAc of male mice, and NAc dopamine levels were reduced in both male mice and rats. Induction of intracellular dopaminergic pathways, DARPP32, and phosphorylation of CREB in the NAc of male mice was also observed. Significantly, pharmacological blockade of D1DR or chemogenetic inhibition of D1DR-expressing medium spiny neurons in the NAc attenuated 25E-NBOMe-induced conditioned place preference in male mice. We also examined the hallucinogenic properties of 25E-NBOMe using the head twitch response test in male mice and found that this behavior was mediated by serotonin 2A receptor activity. Our findings demonstrate that D1DR signaling may govern the addictive potential of 25E-NBOMe. Moreover, our study provides new insights into the potential mechanisms of substance use disorder and the improvement of controlled substance management.


Nucleus Accumbens , Psychotropic Drugs , Receptors, Dopamine D1 , Reward , Signal Transduction , Animals , Male , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/antagonists & inhibitors , Receptors, Dopamine D1/agonists , Mice , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Signal Transduction/drug effects , Rats , Psychotropic Drugs/pharmacology , Rats, Sprague-Dawley , Mice, Inbred C57BL , Phenethylamines/pharmacology , Self Administration , Dopamine/metabolism
5.
ACS Chem Neurosci ; 15(5): 972-982, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38381069

The rapidly evolving psychedelic industry has garnered considerable attention due to 3,4-methylenedioxymethamphetamine-assisted psychotherapy's ground-breaking success in treating moderate-to-severe Post-traumatic Stress Disorder in two Phase 3 clinical trials. This has opened Pandora's box for the development of innovative therapeutic modalities. Of particular interest are the phenethylamines and their ability to inhibit monoamine transporters. In this study, we employed the quantitative structure-activity relationship methodology to develop three vigorous models for the reuptake of serotonin, dopamine, and norepinephrine through monoamine transporters. These models were thoroughly validated using various criteria, including fitting (R2DAT = 0.869, R2SERT = 0.828, and R2NET = 0.887), internal (Q2looDAT = 0.795, Q2looSERT = 0.784, and Q2looNET = 0.820), and external (RMSEextDAT = 0.373, R2extDAT = 0.831, RMSEextSERT = 0.200, R2extSERT = 0.955, RMSEextNET = 0.318, and R2extNET = 0.711) criteria.


Dopamine Plasma Membrane Transport Proteins , Serotonin Plasma Membrane Transport Proteins , Dopamine Plasma Membrane Transport Proteins/metabolism , Mental Health , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Phenethylamines/pharmacology , Psychotherapy , Serotonin Plasma Membrane Transport Proteins/metabolism , Structure-Activity Relationship , Clinical Trials, Phase III as Topic
6.
Bioorg Chem ; 144: 107146, 2024 Mar.
Article En | MEDLINE | ID: mdl-38262088

Due to the important biological properties of dopamine, phenethylamine, and tyramine derivatives in the central nervous system, herein the synthesis of novel α-benzyl dopamine, phenethylamine, and tyramine derivatives is described. The title compounds were synthesized starting from 3-phenylpropanoic acids and methoxybenzenes in six or seven steps. Firstly, 3-(2,3-dimethoxyphenyl)propanoic acid (11) and 3-(3,4-dimethoxyphenyl)propanoic acid (12) were selectively brominated with N-bromosuccinimide (NBS). The Friedel-Crafts acylation of methoxylated benzenes with these brominated acids or commercially available 3-phenylpropanoic acid in polyphosphoric acid gave the desired dihydrochalcones. α-Carboxylation of dihydrochalcones, reduction of benzylic carbonyl groups, hydrolysis of esters to acid derivatives, and the Curtius rearrangement reaction of acids followed by in situ synthesis of carbamates from alkyl isocyanates and hydrogenolysis of the carbamates afforded the title compounds in good total yields. Alzheimer's disease (AD) and Parkinson's disease (PD) are chronic neurodegenerative diseases that become serious over time. However, the exact pathophysiology of both diseases has not been revealed yet. There have been many different approaches to the treatment of patients for many years, especially studies on the cholinergic system cover a wide area. Within the scope of this study, the inhibition effects of dopamine-derived carbamates and amine salts on the cholinergic enzymes AChE and BChE were examined. Dopamine-derived carbamate 24a-i showed inhibition in the micro-nanomolar range; compound 24d showed a Ki value of 26.79 nM against AChE and 3.33 nM against BChE, while another molecule, 24i, showed a Ki range of 27.24 nM and 0.92 nM against AChE and BChE, respectively. AChE and BChE were effectively inhibited by dopamine-derived amine salts 25j-s, with Ki values in the range of 17.70 to 468.57 µM and 0.76-211.23 µM, respectively. Additionally, 24c, 24e and 25m were determined to be 60, 276 and 90 times more selective against BChE than AChE, respectively.


Cholinesterase Inhibitors , Dopamine , Humans , Cholinesterase Inhibitors/pharmacology , Propionates , Structure-Activity Relationship , Cholinergic Antagonists/pharmacology , Salts , Acetylcholinesterase/metabolism , Carbamates/pharmacology , Phenethylamines/pharmacology , Molecular Docking Simulation
7.
Sci Rep ; 13(1): 14406, 2023 09 01.
Article En | MEDLINE | ID: mdl-37658096

Natural phenethylamines are trace amine neurotransmitters associated with dopamine transmission and related illnesses such Parkinson's disease, and addiction. Synthetic phenethylamines can have psychoactive and hallucinogenic effects due to their high affinity with the 5-HT2A receptor. Evidence indicates phenethylamines can directly alter the microtubule cytoskeleton being structurally similar to the microtubule destabilizing agent colchicine, however little work has been done on this interaction. As microtubules provide neuron structure, intracellular transport, and influence synaptic plasticity the interaction of phenethylamines with microtubules is important for understanding the potential harms, or potential pharmaceutical use of phenethylamines. We investigated 110 phenethylamines and their interaction with microtubules. Here we performed molecular docking of these compounds at the colchicine binding site and ranked them via binding energy. The top 10% of phenethylamines were further screened based on pharmacokinetic and physicochemical properties derived from SwissADME and LightBBB. Based on these properties 25B-NBF, 25C-NBF, and DMBMPP were tested in in vitro microtubule polymerization assays showing that they alter microtubule polymerization dynamics in a dose dependent manner. As these compounds can rapidly cross the blood brain barrier and directly affect cytoskeletal dynamics, they have the potential to modulate cytoskeletal based neural plasticity. Further investigations into these mechanisms are warranted.


Microtubules , Phenethylamines , Phenethylamines/pharmacology , Molecular Docking Simulation , Polymerization , Colchicine/pharmacology
8.
Nat Commun ; 14(1): 4986, 2023 08 17.
Article En | MEDLINE | ID: mdl-37591886

The incidence of metabolic syndrome is significantly higher in patients with irritable bowel syndrome (IBS), but the mechanisms involved remain unclear. Gut microbiota is causatively linked with the development of both metabolic dysfunctions and gastrointestinal disorders, thus gut dysbiosis in IBS may contribute to the development of metabolic syndrome. Here, we show that human gut bacterium Ruminococcus gnavus-derived tryptamine and phenethylamine play a pathogenic role in gut dysbiosis-induced insulin resistance in type 2 diabetes (T2D) and IBS. We show levels of R. gnavus, tryptamine, and phenethylamine are positively associated with insulin resistance in T2D patients and IBS patients. Monoassociation of R. gnavus impairs insulin sensitivity and glucose control in germ-free mice. Mechanistically, treatment of R. gnavus-derived metabolites tryptamine and phenethylamine directly impair insulin signaling in major metabolic tissues of healthy mice and monkeys and this effect is mediated by the trace amine-associated receptor 1 (TAAR1)-extracellular signal-regulated kinase (ERK) signaling axis. Our findings suggest a causal role for tryptamine/phenethylamine-producers in the development of insulin resistance, provide molecular mechanisms for the increased prevalence of metabolic syndrome in IBS, and highlight the TAAR1 signaling axis as a potential therapeutic target for the management of metabolic syndrome induced by gut dysbiosis.


Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Insulin Resistance , Irritable Bowel Syndrome , Metabolic Syndrome , Humans , Animals , Mice , Dysbiosis , Phenethylamines/pharmacology , Tryptamines/pharmacology
9.
ACS Chem Neurosci ; 14(15): 2727-2742, 2023 08 02.
Article En | MEDLINE | ID: mdl-37474114

Serotonergic psychedelics are described to have activation of the serotonin 2A receptor (5-HT2A) as their main pharmacological action. Despite their relevance, the molecular mechanisms underlying the psychedelic effects induced by certain 5-HT2A agonists remain elusive. One of the proposed hypotheses is the occurrence of biased agonism, defined as the preferential activation of certain signaling pathways over others. This study comparatively monitored the efficiency of a diverse panel of 4-position-substituted (and N-benzyl-derived) phenylalkylamines to induce recruitment of ß-arrestin2 (ßarr2) or miniGαq to the 5-HT2A, allowing us to assess structure-activity relationships and biased agonism. All test compounds exhibited agonist properties with a relatively large range of both EC50 and Emax values. Interestingly, the lipophilicity of the 2C-X phenethylamines was correlated with their efficacy in both assays but yielded a stronger correlation in the miniGαq- than in the ßarr2-assay. Molecular docking suggested that accommodation of the 4-substituent of the 2C-X analogues in a hydrophobic pocket between transmembrane helices 4 and 5 of 5-HT2A may contribute to this differential effect. Aside from previously used standard conditions (lysergic acid diethylamide (LSD) as a reference agonist and a 2 h activation profile to assess a compound's activity), serotonin was included as a second reference agonist, and the compounds' activities were also assessed using the first 30 min of the activation profile. Under all assessed circumstances, the qualitative structure-activity relationships remained unchanged. Furthermore, the use of two reference agonists allowed for the estimation of both "benchmark bias" (relative to LSD) and "physiology bias" (relative to serotonin).


Hallucinogens , Serotonin , Receptor, Serotonin, 5-HT2A , Molecular Docking Simulation , Hallucinogens/pharmacology , Hallucinogens/chemistry , Phenethylamines/pharmacology , Serotonin 5-HT2 Receptor Agonists/pharmacology
10.
Eur J Pharmacol ; 955: 175926, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37479015

Ring-substituted phenethylamines are believed to induce psychedelic effects primarily by interacting with 5-hydroxytryptamine 2 (5-HT2A) receptors in the brain. We assessed the effect of the psychedelic substances 25H-NBOMe and 25H-NBOH on the depressive-like behavior of male adult rats. Naive Wistar rats were divided into groups to assess the effects of different doses (0.1 mg/kg, 1 mg/kg, and 3 mg/kg) of 25H-NBOMe and 25H-NBOH. The substances were administered intraperitoneally and the hallucinogenic properties were evaluated using the head twitch response test (HTR). Additionally, we assessed their locomotor activity in the open field test (OFT) and depressive-like behavior in the forced swimming test (FST). Our data demonstrated that all doses of synthetic psychedelic substances evaluated exhibited hallucinogenic effects. Interestingly, we observed that both 25H-NBOMe and 25H-NBOH produced a significantly greater motivation to escape in the FST, compared to the control group. Furthermore, we found no significant differences in locomotor activity during the OFT, except for the dose of 3 mg/kg, which induced a reduction in locomotion. This study provides new insights into a potential psychedelic substance, specifically by demonstrating the previously unknown antidepressant properties of a single dose of both 25H-NBOMe and 25H-NBOH. These findings contribute to the ongoing progress of experimental psychiatry toward developing safe and effective clinical practices in the field of psychedelics research.


Hallucinogens , Rats , Male , Animals , Hallucinogens/pharmacology , Rats, Wistar , Antidepressive Agents/pharmacology , Phenethylamines/pharmacology , Swimming
11.
Crit Rev Toxicol ; 53(1): 15-33, 2023 01.
Article En | MEDLINE | ID: mdl-37115704

Recently, a growing number of reports have indicated a positive effect of hallucinogenic-based therapies in different neuropsychiatric disorders. However, hallucinogens belonging to the group of new psychoactive substances (NPS) may produce high toxicity. NPS, due to their multi-receptors affinity, are extremely dangerous for the human body and mental health. An example of hallucinogens that have been lately responsible for many severe intoxications and deaths are 25X-NBOMes - N-(2-methoxybenzyl)-2,5-dimethoxy-4-substituted phenethylamines, synthetic compounds with strong hallucinogenic properties. 25X-NBOMes exhibit a high binding affinity to serotonin receptors but also to dopamine, adrenergic and histamine receptors. Apart from their influence on perception, many case reports point out systemic and neurological poisoning with these compounds. In humans, the most frequent side effects are tachycardia, anxiety, hypertension and seizures. Moreover, preclinical studies confirm that 25X-NBOMes cause developmental impairments, cytotoxicity, cardiovascular toxicity and changes in behavior of animals. Metabolism of NBOMes seems to be very complex and involves many metabolic pathways. This fact may explain the observed high toxicity. In addition, many analytical methods have been applied in order to identify these compounds and their metabolites. The presented review summarized the current knowledge about 25X-NBOMes, especially in the context of toxicity.


Hallucinogens , Animals , Humans , Hallucinogens/pharmacology , Phenethylamines/chemistry , Phenethylamines/metabolism , Phenethylamines/pharmacology , Seizures/chemically induced , Dopamine
12.
Microb Biotechnol ; 16(7): 1492-1504, 2023 07.
Article En | MEDLINE | ID: mdl-36976480

Multidrug efflux pumps are among the main Pseudomonas aeruginosa antibiotic-resistance determinants. Besides, efflux pumps are also involved in other relevant activities of bacterial physiology, including the quorum sensing-mediated regulation of bacterial virulence. Nevertheless, despite the relevance of efflux pumps in bacterial physiology, their interconnection with bacterial metabolism remains obscure. The effect of several metabolites on the expression of P. aeruginosa efflux pumps, and on the virulence and antibiotic resistance of this bacterium, was studied. Phenylethylamine was found to be both inducer and substrate of MexCD-OprJ, an efflux pump involved in P. aeruginosa antibiotic resistance and in extrusion of precursors of quorum-sensing signals. Phenylethylamine did not increase antibiotic resistance; however, the production of the toxin pyocyanin, the tissue-damaging protease LasB and swarming motility were reduced in the presence of this metabolite. This decrease in virulence potential was mediated by a reduction of lasI and pqsABCDE expression, which encode the proteins that synthesise the signalling molecules of two quorum-sensing regulatory pathways. This work sheds light on the interconnection between virulence and antibiotic-resistance determinants, mediated by bacterial metabolism, and points to phenylethylamine as an anti-virulence metabolite to be considered in the study of therapies against P. aeruginosa infections.


Pseudomonas Infections , Pseudomonas aeruginosa , Humans , Virulence , Quorum Sensing , Drug Resistance, Multiple, Bacterial , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Phenethylamines/pharmacology , Phenethylamines/metabolism , Virulence Factors/metabolism , Bacterial Proteins/metabolism , Pseudomonas Infections/microbiology , Biofilms
13.
Neuropharmacology ; 227: 109452, 2023 04 01.
Article En | MEDLINE | ID: mdl-36724866

Serotoninergic psychedelics induced extensive alterations in perception and cognition, which has been attributable to its disruptive effect on oscillatory rhythms of prefrontal cortex. However, there is a lack of information how serotoninergic psychedelics affect the intra-prefrontal network, which intrinsically interact to accomplish perceptual processing. Uncovering the altered neural network caused by psychedelics helps to understand the mechanisms of their psychoactive effects and contribute to develop biological markers of psychedelic effects. In present study, we investigated the effects of substituted phenethylamine psychedelic 25C-NBOMe on neural oscillations in the intra-prefrontal and hippocampal-prefrontal network. The effective dose of 25C-NBOMe (0.1 mg/kg) disrupting sensorimotor gating in male Sprague-Dawley rats was used to observe its effects on neural oscillations in the prelimbic cortex, anterior cingulate cortex, orbitofrontal cortex (OFC) and hippocampus CA1. The power of high frequency oscillation (HFO, 120-150 Hz) was potentiated by 25C-NBOMe selectively in the OFC, with peaking at 20-30 min after treatment. 25C-NBOMe strengthened HFO coherence within the intra-prefrontal, rather than hippocampal-prefrontal network. Potentiated HFO in the OFC had a strong positive correlation with the strengthened inter-prefrontal HFO coherence by 25C-NBOMe. The 25C-NBOMe-induced alterations of rhythmic patterns were prevented by pre-treatment with selective serotonin 2A receptor antagonist MDL100,907. These results demonstrate that OFC rhythmic activity in HFO is relatively susceptible to substituted phenethylamine and potentially drives drug-induced rhythmic coherence within intra-prefrontal regions. Our findings provide additional insight into the neuropathophysiology of the psychoactive effects of psychedelics and indicate that the altered HFO might be applied as a potential biological marker of psychedelic effect.


Hallucinogens , Rats , Male , Animals , Hallucinogens/pharmacology , Rats, Sprague-Dawley , Phenethylamines/pharmacology , Disease Susceptibility , Prefrontal Cortex
14.
Molecules ; 28(2)2023 Jan 14.
Article En | MEDLINE | ID: mdl-36677913

A concise review covering updated presence and role of 2-phenethylamines in medicinal chemistry is presented. Open-chain, flexible alicyclic amine derivatives of this motif are enumerated in key therapeutic targets, listing medicinal chemistry hits and appealing screening compounds. Latest reports in discovering new bioactive 2-phenethylamines by research groups are covered too.


Chemistry, Pharmaceutical , Receptors, G-Protein-Coupled , Phenethylamines/pharmacology , Phenethylamines/chemistry , Receptors, Dopamine D2
15.
Nutr Health ; 29(1): 5-7, 2023 Mar.
Article En | MEDLINE | ID: mdl-35702043

Background: The overall prevalence of diabetes in the world has risen substantially in the past several decades, so have complications and mortalities associated with it. Aim: Prevention strategies for diabetes thus become an urgent public health need for reducing the burden of diabetes. Methods: Ractopamine, a ß1/2-adrenergic receptor agonist, has been approved for use in finishing swine, cattle, and turkey in countries where meat exporting brings tremendous economic benefits. This leanness enhancer is recently found to be a full agonist at trace amine-associated receptor 1 also. A thorough literature review was performed to assess possible effects of ractopamine on glucose metabolism. Results: Activating ß-adrenoceptor could lead to glucose-lowering effects independent of insulin while activation on trace amine-associated receptor 1 induces an incretin-like signaling on insulin-secreting pancreatic ß-cells. Conclusion: Accordingly, it is hypothesized that long-term consuming meat containing ractopamine might lower the risk of type 2 diabetes.


Diabetes Mellitus, Type 2 , Insulins , Humans , Animals , Swine , Cattle , Adrenergic beta-Agonists/therapeutic use , Adrenergic beta-Agonists/pharmacology , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/prevention & control , Phenethylamines/therapeutic use , Phenethylamines/pharmacology , Meat
16.
Psychopharmacology (Berl) ; 239(11): 3723-3730, 2022 Nov.
Article En | MEDLINE | ID: mdl-36190536

RATIONALE: Synthetic phenethylamine (PEA) analogs, such as ß-methylphenethylamine (BMPEA) and N,α-diethylphenethylamine (DEPEA), are often found in dietary supplements, despite regulations prohibiting their sale. PEA analogs are structurally related to amphetamine, and we have shown that BMPEA and DEPEA produce cardiovascular stimulation mimicking the effects of amphetamine. However, few studies have examined behavioral effects of BMPEA, DEPEA, and other PEA analogs. OBJECTIVES: Here, we examined the reinforcing effects of α-ethylphenethylamine (AEPEA, 1 mg/kg/injection), DEPEA (1 mg/kg/injection), and BMPEA (3 mg/kg/injection) as compared to amphetamine (0.1 mg/kg/injection) using a fixed-ratio 1 self-administration paradigm in male rats. METHODS: Male rats were trained in self-administration chambers containing 2 nose-poke holes. A nose-poke response in the active hole delivered drug or saline, whereas a nose-poke response in the inactive hole had no programmed consequence. Four groups of rats were initially trained for 10 days with the doses noted above. Upon acquisition of drug self-administration, a dose-effect function was determined by training rats on 3 additional doses for 3 days each. A separate group of rats was trained with saline. RESULTS: Male rats self-administered each PEA analog and amphetamine, as shown by significant increases in active responses versus inactive responses. Subsequent dose-response testing showed clear differences in potency of the compounds. Amphetamine showed a typical inverted U-shaped dose-effect function, peaking at 0.1 mg/kg/injection. AEPEA and DEPEA also showed inverted dose-effect functions, with each peaking at 0.3 mg/kg/injection. BMPEA did not show an inverted U-shaped dose-effect function, but active responding slowly increased up to a dose of 6 mg/kg/injection. CONCLUSIONS: Taken together, our findings indicate that dietary supplements containing PEA analogs may have significant abuse liability when used recreationally.


Amphetamine , Phenethylamines , Rats , Male , Animals , Rats, Sprague-Dawley , Amphetamine/pharmacology , Phenethylamines/pharmacology , Self Administration , Dietary Supplements , Dose-Response Relationship, Drug
17.
Biomolecules ; 12(10)2022 09 21.
Article En | MEDLINE | ID: mdl-36291550

Ractopamine (RAC) is a synthetic phenethanolamine, ß-adrenergic agonist used as a feed additive to develop leanness and increase feed conversion efficiency in different farm animals. While RAC has been authorized as a feed additive for pigs and cattle in a limited number of countries, a great majority of jurisdictions, including the European Union (EU), China, Russia, and Taiwan, have banned its use on safety grounds. RAC has been under long scientific and political discussion as a controversial antibiotic as a feed additive. Here, we will present significant information on RAC regarding its application, detection methods, conflicts, and legal divisions that play a major role in controversial deadlock and why this issue warrants the attention of scientists, agriculturists, environmentalists, and health advocates. In this review, we highlight the potential toxicities of RAC on aquatic animals to emphasize scientific evidence and reports on the potentially harmful effects of RAC on the aquatic environment and human health.


Animal Feed , Dissent and Disputes , Humans , Swine , Cattle , Animals , Animal Feed/analysis , Phenethylamines/pharmacology , Adrenergic beta-Agonists/pharmacology , Anti-Bacterial Agents
18.
Psychopharmacology (Berl) ; 239(10): 3345-3353, 2022 Oct.
Article En | MEDLINE | ID: mdl-36056214

RATIONALE: Trace amine-associated receptor 1 (TAAR1) is the best-studied receptor of trace amines, a group of biogenic amines expressed at a relatively low level in the mammalian brain. Growing evidence suggests that TAAR1 plays a critical role in various neuropsychiatric disorders. Given that selective TAAR1 agonists were shown to produce pro-cognition and antipsychotic-like effects as well as to suppress drug use and relapse, they have been proposed to be novel treatments for mental disorders such as schizophrenia and addiction. However, the aversive effects of selective TAAR1 agonists remain largely unknown. OBJECTIVES: Here, we evaluated whether the selective TAAR1 full agonist RO5166017 and partial agonist RO5263397 could induce conditioned taste aversion (CTA). RESULTS: We found that RO5166017 and RO5263397 produced significant aversions to both saccharin and NaCl taste novelty. Furthermore, RO5166017 produced CTA to saccharin in TAAR1 heterozygous knockout (taar1±) and wild-type rats but not in TAAR1 homozygous knockout rats (taar1-/-), suggesting that TAAR1 was sufficient for the taste aversive stimulus property of RO5166017. CONCLUSIONS: Taken together, our data indicate that selective TAAR1 agonists could produce strong CTA. Our study urges careful evaluations of the aversive effects of TAAR1 agonists before translating them to clinical use for the treatment of mental disorders.


Antipsychotic Agents , Receptors, G-Protein-Coupled , Taste Perception , Animals , Antipsychotic Agents/chemistry , Antipsychotic Agents/pharmacology , Aversive Agents/chemistry , Aversive Agents/pharmacology , Humans , Mammals , Oxazoles , Phenethylamines/pharmacology , Rats , Receptors, G-Protein-Coupled/agonists , Saccharin/pharmacology , Sodium Chloride , Taste/drug effects , Taste Perception/drug effects
19.
J Anim Sci ; 100(11)2022 Nov 01.
Article En | MEDLINE | ID: mdl-36094302

The objective was to quantify the effects of age and ractopamine (RAC) on whole body oxygen consumption and Leu flux, and oxygen flux and metabolism of nitrogenous compounds by the portal-drained viscera (PDV), liver, and hindquarters (HQ) of steers. Multicatheterized steers were fed a high energy diet every 2 h in 12 equal portions. Five younger steers (body weight, [BW] = 223 ±â€…10.1 kg) were 6 mo old and five older steers (BW = 464 ±â€…16.3 kg) were 14 mo old. Treatments were control (Cont) or 80 mg RAC per kg diet in a crossover design. Nitrogen (N) balance was measured on day 9 to 13. Whole body oxygen consumption and net flux were measured on day 11 and day 13, and net flux of N variables, Phe and Leu kinetics were measured on day 13. Whole body oxygen consumption increased (P < 0.05) in response to RAC in older but not younger steers. Retained N was greater (P = 0.009) for younger than older steers and increased (P = 0.010) with RAC in both ages of steers. Nitrogen retained as a percentage of N apparently absorbed increased (P < 0.05) in the older steers but not the younger steers in response to RAC. Oxygen uptake was greater (P < 0.05) in PDV, liver, and total splanchnic tissues in the younger steers and there was no response to RAC. In contrast, oxygen uptake in HQ increased (P < 0.05) with RAC in the older but not the younger steers. Concentration and net PDV release of α-amino N (AAN) were not affected by age or RAC. Uptake of AAN by liver decreased with RAC (P = 0.001). Splanchnic release of AAN was greater in younger steers (P = 0.020) and increased (P = 0.024) in response to RAC. For HQ tissues, uptake (P = 0.005) and extraction (P = 0.005) of AAN were lesser in older than younger steers and both increased (P = 0.001) in response to RAC. Based on Phe kinetics in HQ, RAC increased (P < 0.05) protein synthesis in older steers but not in younger steers. In contrast, protein breakdown decreased (P < 0.05) in response to RAC in younger steers. In response to RAC, protein degradation was less (P < 0.05) in younger than older steers. Based on Leu kinetics, whole body protein synthesis was greater in the younger steers (P = 0.022) but not altered in response to RAC. Ractopamine enhanced lean tissue growth by increasing supply of AAN to peripheral tissues and altering protein metabolism in HQ. These metabolic responses are consistent with established responses to RAC in production situations.


Ractopamine (RAC) is a feed additive that stimulates rate of gain, feed efficiency, and carcass leanness in finishing cattle. The objective of the present study was to quantify the effects of age and RAC on whole body metabolism and nutrient use by tissues of the portal-drained viscera, liver, and hindquarters of steers. Whole body oxygen consumption and oxygen uptake in hindquarters increased in response to RAC in older but not younger steers. Retained nitrogen was greater for younger than older steers and increased with RAC in both ages of steers. Uptake of α-amino nitrogen by liver decreased with RAC. For hindquarters tissues, uptake of α-amino nitrogen was lesser in older than younger steers and increased in both ages in response to RAC. Ractopamine increased protein synthesis in hindquarters of older steers but not in younger steers. In contrast, in response to RAC, protein breakdown decreased in younger steers and was less in younger than older steers. Ractopamine enhanced lean tissue growth by altering protein metabolism in hindquarters and increasing supply of α-amino nitrogen to peripheral tissues. The response to RAC was greater in older steers.


Oxygen , Phenethylamines , Cattle , Animals , Oxygen/metabolism , Phenethylamines/pharmacology , Phenethylamines/metabolism , Diet/veterinary , Liver/metabolism , Nitrogen/metabolism , Body Weight/physiology
20.
Int J Mol Sci ; 23(15)2022 Aug 03.
Article En | MEDLINE | ID: mdl-35955741

Dofetilide is a rapid delayed rectifier potassium current inhibitor widely used to prevent the recurrence of atrial fibrillation and flutter. The clinical use of this drug is associated with increases in QTc interval, which predispose patients to ventricular cardiac arrhythmias. The mechanisms involved in the disposition of dofetilide, including its movement in and out of cardiomyocytes, remain unknown. Using a xenobiotic transporter screen, we identified MATE1 (SLC47A1) as a transporter of dofetilide and found that genetic knockout or pharmacological inhibition of MATE1 in mice was associated with enhanced retention of dofetilide in cardiomyocytes and increased QTc prolongation. The urinary excretion of dofetilide was also dependent on the MATE1 genotype, and we found that this transport mechanism provides a mechanistic basis for previously recorded drug-drug interactions of dofetilide with various contraindicated drugs, including bictegravir, cimetidine, ketoconazole, and verapamil. The translational significance of these observations was examined with a physiologically-based pharmacokinetic model that adequately predicted the drug-drug interaction liabilities in humans. These findings support the thesis that MATE1 serves a conserved cardioprotective role by restricting excessive cellular accumulation and warrant caution against the concurrent administration of potent MATE1 inhibitors and cardiotoxic substrates with a narrow therapeutic window.


Anti-Arrhythmia Agents , Atrial Fibrillation , Animals , Anti-Arrhythmia Agents/pharmacology , Humans , Mice , Phenethylamines/pharmacology , Sulfonamides/therapeutic use
...